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Abstract-In this paper method is developed to solve two 
problems, spelling error correction and query reformulation 
of queries in web search. A search session in web search is 
comprised of a sequence of queries from the same user within 
a short time period. Many of search sessions in our data 
consist of misspelled queries and their corrections. We 
employed heuristics to automatically mine training pairs from 
search session data. Efficiency is vital for this task due to 
dictionary is extremely large and the response time must be 
very short. Proposed approach is very accurate and efficient 
improving upon existing methods in terms of accuracy and 
efficiency in different settings. Top k pruining algorithm is 
used to generate most likely spelling error correction. 

1. INTRODUCTION

In String transformation, given an input string and set of 
operators we transform the input string into most likely 
output strings. Operator is nothing but transformation rule 
that defines replacement of input string with output string. 
Likelihood represents similarity, association and relevance 
between input and output strings. Precisely goal of this 
work is improving efficiency and accuracy. Work is 
divided into two tasks spelling error correction and query 
reformulation.  In spelling error correction there are two 
steps candidate generation and candidate selection. In 
candidate generation most likely corrections for misspelled 
words are given and in query reformulation. In previous 
work on string transformation efficiency is not an important 
factor taken into consideration. In contrast, our work in this 
paper develops a model for string transformation which can 
achieve both high accuracy and efficiency. There are three 
fundamental problems with string transformation: (1) how 
to define a model which can achieve both high accuracy 
and efficiency, (2) how to accurately and efficiently train 
the model from training instances, (3) how to efficiently 
generate the top k output strings given the input string, with 
or without using a dictionary. The log linear model gives 
conditional probability distribution of an output string and a 
rule set given an input string. The learning estimates 
maximum likelihood. Thus, the model is trained toward the 
objective of generating strings with the largest likelihood 
given input strings. Top k pruining algorithm efficiently 
generates top k candidates. The experimental results on the 
two problems demonstrate that our method consistently and 
significantly performs better than the baseline methods of 
generative model and logistic regression model in terms of 
accuracy and efficiency. 

1.1 Model for string transformation 
String transformation model is proposed as shown in 
following figure in which there are three main phases: 
learning phase, generation phase and selection phase. 
1.1.1  Learning Phase 

Rule set is primary focus on learning phase. Here 
weights are estimated for transformation rules with 
user input. The type of transformation rules are 
stemming, prefix, suffix and acronym. Our model is 
designed for both accurate and efficient string 
transformation, with transformation rules and weight. 
Model: Model consist of rules and weights. A rule is 
represented as α→β which denotes an operation of 
replacing substring α in the input string with substring 
β, where α,βϵ{s/s= t, s=^t, s=t$, or s=^t$}Where ^ and 
$ are the start and end symbols respectively. 
Training Model: Training data is given as a set of pairs 
T=sij,sojj=1N, Where sij is input string and soj is 
output string. We define likelihood on the basis of 
conditional probability of output strings given input 
strings. 

1.1.2 Generation Phase 
In this phase we generate most likely k output strings. 

1.1.3 Selection Phase 
In selection phase candidates are selected which 
having highest weights. 

1.1.4  Spelling error correction 
Spelling error correction is divided into two tasks: 
candidate generation and candidate selection. Brill and 
moore previously developed generative model but in 
this project we are using discriminative model which 
can work better than generative model because it is 
trained for enhancing accuracy. In this paper, we work 
on candidate generation, which can be applied to 
spelling error Correction for both high and low 
frequency words. 

1.1.5 Query Reformulation 
Query reformulation rewrites the original query with 
its similar queries and enhances the effectiveness of 
search. The weights of the transformation rules are 
calculated based on log likelihood ratio. Query 
reformulation in search is aimed at dealing with the 
term mismatch problem. For example, if the query is 
NY Times and the document only contains New York 
Times, then the query and document do not match well 
and the document will not be ranked high. Query 
reformulation transforms NY Times to New York 
Times and makes matching between the query and 
document. 

Swapnali S. Maske et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4409-4411

www.ijcsit.com 4409



 
Fig 1. String transformation model 

 
2. METHODOLOGY 

In this paper we employ top k pruning technique to achieve 
efficiency in string transformation. It eliminates unlikely 
paths thus improve efficiency. Steps for top k pruning 
algorithm are given as follows: 

Input: rule index Ir, input string s, candidate 
number k 

Output: top k output strings in Stopk 
Begin 
Find all rules applicable to S from Ir with Aho 

corasic algorithm 
Minscore=-1 
Qpath=Stopk 
Add (1,^,0) into Qpath 
While Qpath is not empty do 
Pickup a path (pos,string,score) from Qpath with 

heuristics 
If score _ minscore then 
Continue If pos== |Sj|AND string reaches $ then 
If |Sk| <= k then 
Remove candidate with minimum score from 

Stopk 
Add candidate (string, score) into Stopk 
Update minscore with minimum minimum score 

in Stopk 
Foreach next substring c at pos do 
α→β= corresponding rule of c 
pos=pos+|α| 
string=string+ β 
score=score+ λα→β 
Add(pos,string,score) into Qpath 
If(pos,string,score)in Qpath then 
Drop the path with similar score 
Return Sk 

In this algorithm a triple (pos, string, score) is used to 
denote each path generated corresponding to the position, 
the content and the score. Qpath is a priority queue. It 
stores paths, and is initialized with path (1, ^, 0). Stopk is a 
set that stores k candidates and scores (string, score). The 

algorithm picks up one path from Qpath each time and 
expands the path from its current position. Path is popped 
up from the priority queue when one path is processed. The 
algorithm uses the top k pruning strategy to eliminate 
unlikely paths and improve efficiency. If the score is 
smaller than the minscore of the top k list Stopk, then the 
path is discarded. The path with larger score is kept. 
Advantages: 
The algorithm uses top k pruning strategy to eliminate 
unlikely paths thus improves efficiency. 
 

3. RESULTS AND DISCUSSION 
To improve efficiency and accuracy is goal of this system. 
The system we developed in this study is evaluated using 
the following three metrics. 
3.1.1  Accuracy 

The number of correct outputs generated by the system 
divided by the total number of queries in the test set. 
AccuracyTopN( N=1,5,10,25,100)=Number of 
answers whose answer is in TopN/number of total 
samples 

3.1.2  Precision 
The number of correct spelling corrections for 
misspelled Queries generated by the system divided by 
the total number  of corrections generated by the 
system.  
Precision= Number of valid correction/(Number of 
valid correction + number of bad correction) 

3.1.3  Recall 
The number of correct spelling corrections for 
misspelled queries generated by the system divided by 
the total number of misspelled queries in the test set.  
Recall= Number of valid correction/(Number of valid 
correction +Number of no correction + number of bad 
correction).  
 

Following figure shows the results of accuracy and 
efficiency compared with the default setting. Default 
settings given as: 973,902 words in the dictionary, 10,597 
rules for correction, and up to two rules used in one 
transformation. We made use of 100,000 word pairs mined 
from query sessions for training, and 10,000 word pairs for 
testing. 
 

 
Fig. 2. Accuracy comparison between baselines and our 

method with Default settings. 
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The experiental results in Fig. 2. shows that our method 
always performs better compared with the baselines. As k 
increases the performance of logistic becomes saturated, 
because the method allows the use of one rule each time. 
We observe that there are many word pairs in the data that 
need to be transformed with multiple rules. We compared 
three methods by using one rule. Our method works better 
than the baselines, especially when k is small. The 
experimental results in Fig.3. shows that running time of 
our method is remarkably less than generative and logistic 
method. So we can conclude that our method works 
efficiently with top k pruning strategy. 
 
 

 
Fig.3. EEfficiency comparison between baselines and our 

method with Default settings. 
 
 

4. CONCLUSION 
In this paper we have proposed a new statistical method for 
string transformation. This method is unique in its model, 
learning algorithm and string transformation algorithm. 
Two specific applications are addressed with this method 
namely spelling error correction and query reformulation in 
web search. This paper focuses on accuracy and efficiency 
of string transformation. This method is particularly useful 
when the problem occurs on a large scale. 
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